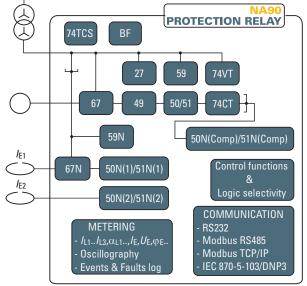


NA90 PHASE & RESIDUAL OVERCURRENT, PHASE & GROUND DIRECTIONAL, THERMAL IMAGE, PHASE UNDER/OVERVOLTAGE, RESIDUAL OVERVOLTAGE WITH TWO INDEPENDENT RESIDUAL CURRENT INPUTS

□ Application


The relay type NA90 can be typically used in radial or meshed MV and LV networks as feeder or power transformer protection:

- On radial, ring and parallel feeders of any length in solidly grounded, ungrounded, Petersen coil and/or resistance grounded systems.
- On parallel connected generators and transformer on the same busbar.
- For ground fault protection on both sides of power MV-LV transformers.

Moreover undervoltage, overvoltage and automatic reclosing functions are provided.

Protective functions

27	Undervoltage
49	Thermal image (for lines and transformers)
50/51	Phase overcurrent
50N(1)/51N(1)	Measured residual overcurrent
50N(2)/51N(2)	Measured residual overcurrent
50N(Comp)/51N(Co	mp) Computed residual overcurrent
59	Overvoltage
59N	Residual overvoltage
67	Directional phase overcurrent
67N	Directional earth fault overcurrent
79	Automatic reclosing
BF	Circuit breaker failure
1	

Firmware updating

The use of flash memory units allows on-site firmware updating.

□ Measuring inputs

- Three phase current inputs and one residual current input (*I*_{E1}), with nominal currents independently selectable at 1 A or 5 A through DIP-switches.
- One residual current input (*I*_{E2}), with nominal current at 1 A.
- Three phase voltage inputs with programmable nominal voltages within range 50...130 V ($U_{\rm R}$ = 100 V) or 200...520 V ($U_{\rm R}$ = 400 V).

Construction

According to the hardware configurations, the NA90 protection relay can be shipped in various case styles depending on the required mounting options (flush, projecting mounting, rack or with separate operator panel).

□ Modular design

In order to extend I/O capability, the NA90 hardware can be customized through external auxiliary modules:

- MRI Output relays and LEDs
- MID16 Binary inputs
- MCI 4...20 mA converters
- MPT Pt100 thermal probes.

Binary inputs

Two binary inputs are available with programmable active state (active-ON/active-OFF) and programmable timer (active to OFF/ ON or ON/OFF transitions).

Several presettable functions can be associated to each input.

Blocking input/outputs

One output blocking circuit and one input blocking circuit are provided.

The output blocking circuits of one or several Pro_N relays, shunted together, must be connected to the input blocking circuit of the protection relay, which is installed upstream in the electric plant. The output circuit works as a simple contact, whose condition is detected by the input circuit of the upstream protection relay.

Use of suitable pilot wire to fiber optic converters (BFO) allows to perform fast and reliable accelerated logic selectivity on radial and closed ring networks.

Output relays

Six output relays are available (two changeover, three make and one break contacts); each relay may be individually programmed as normal state (normally energized, de-energized or pulse) and reset mode (manual or automatic). A programmable timer is provided for each relay (minimum pulse width). The user may program the function of each relay according to a matrix (tripping matrix) structure.

□ MMI (Man Machine Interface)

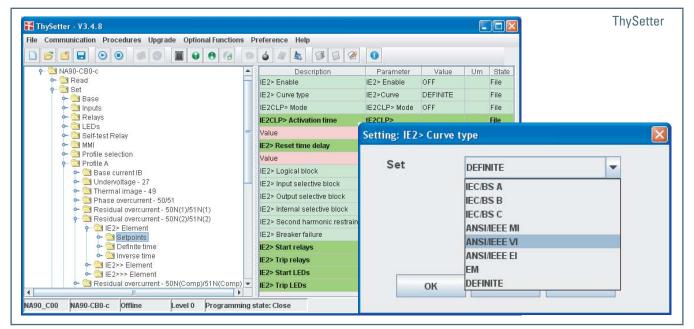
The user interface comprises a membrane keyboard, a backlight LCD alphanumeric display and eight LEDs.

The green ON LED indicates auxiliary power supply and self diagnostics, two LEDs are dedicated to the Start and Trip (yellow for Start, red for Trip) and five red LEDs are user assignable.

□ Communication

- Multiple communication interfaces are implemented:
- One RS232 local communication front-end interface for communication with ThySetter setup software.
- Two back-end interfaces for communication with remote monitoring and control systems by:
 - RS485 port using ${\rm ModBus} \circledast$ RTU, IEC 60870-5-103 or DNP3 protocol.

- Ethernet port (RJ45 or optical fiber) using ModBus/TCP protocol.


Programming and settings

All relay programming and adjustment operations may be performed through MMI (Keyboard and display) or using a Personal Computer with the aid of the ThySetter software.

The same PC setup software is required to set, monitor and configure all $\ensuremath{\mathsf{Pro}_N}$ devices.

- Full access to the available data is provided:
- Read status and measures.
- Read/edit settings (on-line or off-line edit).

Two session level (User or Administrator) with password for sensible data access are provided.

$\hfill\square$ Control and monitoring

- Several predefined functions are implemented: • Activation of two set point profiles.
- Activation of two set point promes.
 Phase CTs and VTs monitoring (74CT and 74VT).
- Phase UIs and VIs monitoring (74UI and Logic colocitivity)
- Logic selectivity.
- Cold load pickup (CLP) with block or setting change.
- Trip circuit supervision (74TCS).
- Second harmonic restraint (inrush).
- Remote tripping.
- Circuit Breaker commands and diagnostic.

User defined logic may be customized according to IEC 61131-3 standard protocol (PLC).

Circuit Breaker

Several diagnostic, monitoring and control functions are provided:

- Health thresholds can be set; when the accumulated duty (ΣI or $\Sigma I^2 t$), the number of operations or the opening time exceeds the threshold an alarm is activated.
- Breaker failure (BF); breaker status is monitored by means 52a-52b and/or through line current measurements.
- Trip circuit supervision (74TCS).
- Breaker control; opening and closing commands can be carried out locally or remotely.

Cold Load Pickup (CLP)

Cold load pickup element prevents unwanted tripping in case of temporary overcurrents produced when a feeder is being connected after an extended outage (e.g. motor starting).

Two different operating modes are provided:

- Each protective element may be blocked for a programmable time.
- Each threshold can be increased for a programmable time.

Second harmonic restraint

To prevent unwanted tripping of the protective functions on transformer inrush current, the protective elements can be blocked when the ratio between the second harmonic current and the relative fundamental current is larger than a user programmable threshold.

The function can be programmed to switch an output relay so as to cause a blocking protection relays lacking in second harmonic restraint.

Logic selectivity

With the aim of providing a fast selective protection system some protective functions may be blocked (pilot wire accelerated logic). To guarantee maximum fail-safety, the relay performs a run time monitoring for pilot wire continuity and pilot wire shorting. Exactly the output blocking circuit periodically produces a pulse, having a small enough width in order to be ignored as an effective blocking signal by the input blocking circuit of the upstream protection, but suitable to prove the continuity of the pilot wire. Furthermore a permanent activation (or better, with a duration longer than a preset time) of the blocking signal is identified, as a warning for a possible short circuit in the pilot wire or in the output circuit of the downstream protection.

□ Self diagnostics

All hardware and software functions are repeatedly checked and any anomalies reported via display messages, communication interfaces, LEDs and output relays.

Anomalies may refer to:

- Hw faults (auxiliary power supply, output relay coil interruptions, MMI board...).
- Sw faults (boot and run time tests for data base, EEPROM memory checksum failure, data BUS,...).
- Pilot wire faults (break or short in the wire).
- Circuit breaker faults.

□ Metering

NA90 provides metering values for phase and residual currents, phase and residual voltage, making them available for reading on a display or to communication interfaces.

Input signals are sampled 24 times per period and the RMS value of the fundamental component is measured using the DFT (Discrete Fourier Transform) algorithm and digital filtering.

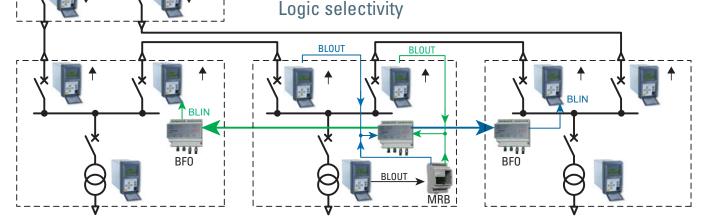
With DFT the RMS value of 2nd, 3rd, 4th and 5th harmonic of phase current are also measured.

On the base of the direct measurements, several calculated (min, max, average,...), phase, sequence, power, harmonic, demand and energy measures are processed.

Measures can be displayed with reference to nominal values or directly expressed in amperes and volts.

Event storage

Several useful data are stored for diagnostic purpose; the events are stored into a non volatile memory.


They are graded from the newest to the older after the "Events reading" command (ThySetter) is issued:

- Sequence of Event Recorder (SER).
- The event recorder runs continuously capturing in circular mode the last three hundred events upon trigger of binary in-put/output.
- Sequence of Fault Recorder (SFR). The fault recorder runs continuously capturing in circular mode the last twenty faults upon trigger of binary input/output and/or element pickup (start-trip).
- Trip counters.

Digital Fault Recorder (Oscillography)

Upon trigger of tripping/starting of each function or external signals, the relay records in COMTRADE format:

- Oscillography with instantaneous values for transient analysis.
- RMS values for long time periods analysis.
- Logic states (binary inputs and output relays).

SPECIFICATIONS

GENERAL

Mechanical data Mounting: flush, projecting, rack Mass (flush mounting case)	< or separated o	operator panel 2.0 kg
Insulation tests Reference standards High voltage test 50Hz Impulse voltage withstand (1.2/50 µ Insulation resistance	ls)	EN 60255-5 2 kV 60 s 5 kV >100 MΩ
Voltage dip and interruption Reference standards		EN 61000-4-29
EMC tests for interference ima 1 MHz damped oscillatory wave Electrostatic discharge Fast transient burst (5/50 ns) Conducted radio-frequency fields Radiated radio-frequency fields High energy pulse Magnetic field 50 Hz Damped oscillatory wave Ring wave Conducted common mode (0150 kHz)	EN 60255-22-1 EN 60255-22-2 EN 60255-22-4 EN 60255-22-6 EN 60255-4-3 EN 61000-4-5 EN 61000-4-8 EN 61000-4-12 EN 61000-4-12	1 kV-2.5 kV 8 kV 4 kV 10 V 10 V/m 2 kV 1 kA/m 2.5 kV 2 kV 10 V
Emission Reference standards Conducted emission 0.1530 MHz Radiated emission 301000 MHz	EN 61000-6-4 (e	ex EN 50081-2) Class A Class A
Climatic tests Reference standards IEC (60068-x, ENEL R	CLI 01, CEI 50
Mechanical tests Reference standards	EN 60255-2	21-1, 21-2, 21-3
Safety requirements Reference standards Pollution degree Reference voltage Overvoltage Pulse voltage Reference standards Protection degree: • Front side • Rear side, connection terminals		EN 61010-1 3 250 V III 5 kV EN 60529 IP52 IP52
Environmental conditions Ambient temperature Storage temperature Relative humidity Atmospheric pressure		-25+70 °C -40+85 °C 1095 % 70110 kPa
Certifications Product standard for measuring re CE conformity • EMC Directive • Low Voltage Directive Type tests		EN 50263 89/336/EEC 73/23/EEC IEC 60255-6
COMMUNICATION INTERFAC	<u>E9</u>	19200 bps

Local PC RS232 19200 bps Network: 1200...57600 bps 100 Mbps • RS485 • Ethernet 100BaseT ModBus® RTU/IEC 60870-5-103/DNP3-TCP/IP Protocol

INPUT CIRCUITS

Auxiliary power supply U _{AUX} Nominal value (range) 2448 Vac/dc
115230 Vac/110220 Vdc Operative range (each one of the above nominal values) 1960 Vac/dc 85265 Vac/75300 Vdc
Power consumption:000000000000000000000000000000000
$\begin{array}{l lllllllllllllllllllllllllllllllllll$
$\begin{array}{l lllllllllllllllllllllllllllllllllll$
Residual current input I_{E2} Nominal current I_{En} 1 APermanent overload5 AThermal overload (1s)100 ARated consumption ≤ 0.006 VA
Voltage inputsReference voltage U_R 100 V or 400 V selectable on orderNominal voltage U_n 50130 V or 200520 V adjustable via swPermanent overload1.3 U_R 1s overload2 U_R Rated consumption (for any phase) ≤ 0.5 VA
Binary inputsQuantity2Typedry inputsMax permissible voltage19265 Vac/19300 VdcMax consumption, energized3 mA
Block input (Logic selectivity)Quantity1Typepolarized wet input (powered by internal isolated supply)Max consumption, energized5 mA
OUTPUT CIRCUITS
Output relays K1K6Quantity6• Type of contacts K1, K2changeover (SPDT, type C)• Type of contacts K3, K4, K5make (SPST-NO, type A)• Type of contacts K6break (SPST-NC, type B)Nominal current8 ANominal voltage/max switching voltage250 Vac/400 VacBreaking capacity:50 W• Direct current (L/R = 40 ms)50 W• Alternating current ($\lambda = 0,4$)1250 VAMake1000 W/VA
Short duration current (0,5 s) 30 A
Block output (Logic selectivity)Quantity1Typeoptocoupler
LEDs Quantity 8 • ON/fail (green) 1 • Start (yellow) 1 • Trip (red) 1 • Allocatable (red) 5 - 2009

GENERAL SETTINGS

	Rated values			
	Relay nominal frequency (f _n)	50, 60 Hz		
	Relay phase nominal current (I_n)	1 A, 5 A		
	Phase CT nominal primary current (Inp)	1 A10 kA		
	Relay residual nominal current (<i>I</i> _{E1n})	1 A, 5 A		
	Relay residual nominal current (I _{E2n})	1 A		
	Residual CT nominal primary current (IE1np)			
	Residual CT nominal primary current (IE2np			
	Relay nominal voltage (phase-to-phase) (Un)	,		
	Relay nominal voltage (phase-to-ground)	$E_{\rm n} = U_{\rm n}/\sqrt{3}$		
	Line VT primary nominal voltage (phase-to-ph			
	Relay residual nominal voltage (computed r			
	$U_{\rm ECn} = \sqrt{3} \cdot U_{\rm n} = 3 \cdot E_{\rm n}$			
	Residual primary nominal voltage (phase-to			
	Delement of the second (D) D /2	50 V500 kV		
	Relay nominal active power (P_n) $P_n = \sqrt{3}$	$\cdot U_{n} \cdot I_{n} = 3 \cdot E_{n} \cdot I_{n}$		
	Relay nominal reactive power $(Q_n) Q_n = \sqrt{3}$			
	Relay nominal apparent power (S_n)	$v_{\rm n} = \sqrt{3} \cdot U_{\rm n} \cdot I_{\rm n} = 3 \cdot E_{\rm n} \cdot I_{\rm n}$		
	Binary input timers			
	ON delay time (IN1 ton, IN2 ton)	0.00100.0 s		
	OFF delay time (IN1 <i>t</i> _{OFF} , IN2 <i>t</i> _{OFF})	0.00100.0 s		
		Active-ON/Active-OFF		
	-			
	Relay output timers			
	Minimum pulse width	0.0000.500 s		
	FUNCTIONS			
	Base current IB [1]			
_	Base current (<i>I</i> _B)	0.102.50 <i>I</i> n		
Not				

Note 1: the basic current IB represents the nominal current of the line or transformer, referred to the nominal current of the CT's for thermal image protection. If the secondary rated current of the line CT's equals the rated current ofthe relay, as usually happens, the IB value is the ratio between therated current of the protected element and the primary rated current of the CT's

Thermal with PT100 thermometric probes - 26 ^[2] <i>PT1 probe:</i>		
 ThAL1 Alarm PT1 Alarm threshold (ThAL1) ThAL1 Operating time (t_{ThAL1}) 	0200 °C 0100 s	
Th>1 Trip • PT1 Trip threshold (Th>1) • Th>1 Operating time (t _{Th>1})	0200 °C 0100 s	
PT28: probe ThAL28 Alarm		
 PT28 Alarm threshold (<i>ThAL28</i>) <i>ThAL28</i> Operating time (<i>t</i>_{ThAL28}) 	0200 °C 0100 s	
Th>28 Trip • PT28 Trip threshold (Th>28) • Th>28 Operating time (t _{Th>28})	0200 °C 0100 s	

Note 2: the element is available when the MPT module, connected to the Thybus, is enabled

Undervoltage - 27 Common configuration: • Voltage measurement type for 27 (Utype27) ^[1] • 27 Operating logic (Logic27)	[]] U _{ph-ph} /U _{ph-n} AND/OR
U< Element • U< Curve type (U <curve) Definite time</curve) 	DEFINITE INVERSE ^[2]
• 27 First threshold definite time (U_{def}) • U_{def} Operating time ($t_{\text{U}}_{\text{def}}$) Inverse time	0.051.10 <i>U</i> _n / <i>E</i> _n 0.03100.0 s
 27 First threshold inverse time (U<inv)< li=""> U<inv (t<sub="" operating="" time="">U<inv)< li=""> </inv)<></inv></inv)<>	0.051.10 <i>U</i> _n / <i>E</i> _n 0.10100.0 s

U<< Element
Definite time

	 Definite time 27 Second threshold definite time (U<<def)< li=""> U<<def (t<sub="" operating="" time="">U<<def)< li=""> </def)<></def></def)<>	0.051.10 <i>U</i> _n / <i>E</i> _n 0.03100.0 s
	The 1: With U_{ph-ph} setting all threshold are in p.u. U_n with U_{ph-n} setting all threshold are in p.u. E_n are 2: The mathematical formula for INVERSE curves in $t = 0.75 \cdot t_U \le i_{nv} / [1 - (U/U \le i_{nv})]$ are:	S::
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t = operating time (in seconds) t _U < _{inv} = operating time setting (in seconds) U = input voltage U< _{inv} = threshold setting	
	Common configuration: • Initial thermal image Δθ _{IN} (Dth _{IN}) • Reduction factor at inrush (K _{INR})	0.01.0 ⊿θ _B 1.03.0
	 Thermal time constant τ (<i>T</i>) DthIN Activation time (<i>t</i>_{dthCLP}) 	1200 min 0.00100.0 s
	<i>DthAL1 Element</i> 49 First alarm threshold ⊿θ _{AL1} (<i>Dth</i> _{AL1})	0.31.0 <i>Δ</i> θ _B
	DthAL2 Element 49 Second alarm threshold ⊿θ _{AL2} (Dth _{AL2})	0.31.0 ⊿θ _B
	<i>Dth> Element</i> 49 Trip threshold ⊿θ (<i>Dth></i>)	1.2 <i>Δ</i> θ _B
	Phase overcurrent - 50/51 I> Element	
		DEFINITE IEC/BS A, B, C NSI/IEEE MI, VI, EI ECTIFIER, I²t or EM
	 I_{CLP} > Activation time (t_{CLP}) I> Reset time delay (t>_{RES}) Definite time 	0.00100.0 s 0.00100.0 s
	 50/51 First threshold definite time (<i>I</i>>def) <i>I</i>>def within CLP (<i>I</i>_{CLP>def}) <i>I</i>>def Operating time (<i>t</i>>def) <i>Inverse time</i> 	0.10040.0 / _n 0.10040.0 / _n 0.04200 s
	 50/51 First threshold inverse time (<i>I</i>>inv) <i>I</i>>inv within CLP (<i>I</i>_{CLP>inv}) <i>I</i>>inv Operating time (<i>t</i>>inv) 	0.10040.0 / _n 0.10040.0 / _n 0.0260.0 s
	<i>l>> Element</i> • Type characteristic (<i>l>></i> Curve)	DEFINITE
	 <i>I</i>_{CLP}>> Activation time (<i>t</i>_{CLP>>}) <i>I</i>>> Reset time delay (<i>t</i>>>_{RES}) <i>Definite time</i> 	l²t 0.00100.0 s 0.00100.0 s
	 50/51 Second threshold definite time (<i>I</i>>>_{de} <i>I</i>>>_{def} within CLP (<i>I</i>_{CLP>>def}) <i>I</i>>>_{def} Operating time (<i>t</i>>>_{def}) <i>Inverse time</i> 	f) 0.10040.0 <i>I</i> _n 0.10040.0 <i>I</i> _n 0.0310.00 s
	 50/51 Second threshold inverse time (/>>inv />>inv within CLP (/_{CLP>>inv}) />>inv Operating time (t>>inv) 	/) 0.10020.00 / _n 0.10020.00 / _n 0.0210.00 s
	 I>>> Element I_{CLP}>>> Activation time (t_{CLP>>>}) I>>> Reset time delay (t>>>_{RES}) Definite time 	0.00100.0 s 0.00100.0 s
	 50/51 Third threshold definite time (I>>>def) I>>>def within CLP (I_{CLP>>>def}) I>>>def Operating time (t>>>def) 	0.10040.0 /n 0.10040.0 /n 0.0310.00 s
	Residual overcurrent - 50N(1)/51N(1) I _{E1} > Element	
	• I=1> Curve type (I=1>Curve)	DEEINITE

 I_{E1}> Curve type (I_{E1}>Curve) 	DEFINITE
	IEC/BS A, B, C
	ANSI/IEEE MI, VI, EI
	EM

 <i>I</i>_{E1CLP}> Activation time (<i>t</i>_{E1CLP}>) <i>I</i>_{E1}> Reset time delay (<i>t</i>_{E1>RES}) 	0.00100.0 s 0.00100.0 s
$\begin{array}{l} \textit{Definite time} \\ \bullet \ 50N(1)/51N(1) \ \textit{First threshold definite time} \ (\textit{I}_{E1>de} \\ \bullet \ \textit{I}_{E1>def} \ \textit{within CLP} \ (\textit{I}_{E1CLP>def}) \\ \bullet \ \textit{I}_{E1>def} \ \textit{Operating time} \ (\textit{t}_{E1>def}) \end{array}$	f) 0.00210.00 <i>I</i> _{E1n} 0.00210.00 <i>I</i> _{E1n} 0.04200 s
Inverse time • 50N(1)/51N(1) First threshold inverse time (I _{E1>inv} • I _{E1>inv} within CLP (I _{E1CLP>inv}) • I _{E1>inv} Operating time (t _{E1>inv})) 0.0022.00 / _{E1n} 0.0022.00 / _{E1n} 0.0260.0 s
I _{E1>>} Element I _{E1CLP>>} Activation time (t _{E1CLP>>}) I _{E1>>} Reset time delay (t _{E1>>RES}) Definite time	0.00100.0 s 0.00100.0 s
 50N(1)/51N(1) Second threshold def. time (<i>I</i>_{E1}>>_{def}) <i>I</i>_{E1}>>_{def} within CLP (<i>I</i>_{E1CLP>>def}) <i>I</i>_{E1}>>_{def} Operating time (<i>t</i>_{E1}>>_{def}) <i>I</i>_{E1}>>> Element 	0.00210.00 / _{E1n} 0.00210.00 / _{E1n} 0.0310.00 s
 <i>I</i>_{E1}>>> Element <i>I</i>_{E1CLP}>>> Activation time (<i>t</i>_{E1CLP}>>>) <i>I</i>_{E1CLP}>>> Reset time delay (<i>t</i>_{E1}>>>_{RES}) <i>Definite time</i> 	0.00100.0 s 0.00100.0 s
 50N(1)/51N(1) Third threshold def. time (<i>I</i>_{E>>>def}) <i>I</i>_{E1CLP}>>>def within CLP (<i>I</i>_{E1CLP}>>>def) <i>I</i>_{E1CLP}>>>def Operating time (<i>t</i>_{E1}>>>def) 	0.00210.00 / _{E1n} 0.00210.00 / _{E1n} 0.0310.00 s
Residual overcurrent - 50N(2)/51N(2) I _{F2} > Element	
• <i>I</i> _{E2} > Curve type (<i>I</i> _{E2} >Curve)	DEFINITE IEC/BS A, B, C SI/IEEE MI, VI, EI EM
 <i>I</i>_{E2CLP}> Activation time (<i>t</i>_{E2CLP}>) <i>I</i>_{E2}> Reset time delay (<i>t</i>_{E2}> RES) 	0.00100.0 s 0.00100.0 s
Definite time • 50N(2)/51N(2) First threshold definite time ($I_{E2>de}$ • $I_{E2>def}$ within CLP ($I_{E2CLP>def}$) • $I_{E2>def}$ Operating time ($t_{E2>def}$) Inverse time • 50N(2)/51N(2) First threshold inverse time ($I_{E2>inv}$ • $I_{E2>inv}$ within CLP ($I_{E2CLP>inv}$) • $I_{E2>inv}$ Operating time ($t_{E2>inv}$) $I_{E2>> Element$	0.00210.00 / _{E2n} 0.04200 s
 <i>I</i>_{E2CLP>>} Activation time (<i>t</i>_{E2CLP>>}) <i>I</i>_{E2>>} Reset time delay (<i>t</i>_{E2>>RES}) <i>Definite time</i> 	0.00100.0 s 0.00100.0 s
 50N(2)/51N(2) Second threshold def. time (<i>I</i>_{E2}>>_{def}) <i>I</i>_{E2}>>_{def} within CLP (<i>I</i>_{E2}CLP>>def) <i>I</i>_{E2}>>_{def} Operating time (<i>t</i>_{E2}>>_{def}) <i>I</i>_{E2}>>> Element 	0.00210.00 / _{E2n} 0.00210.00 / _{E2n} 0.0310.00 s
 <i>I</i>_{E2CLP>>>} Activation time (<i>t</i>_{E2CLP>>>}) <i>I</i>_{E2CLP>>>} Reset time delay (<i>t</i>_{E2>>>RES}) <i>Definite time</i> 50N(1)/51N(1) Third threshold def. time (<i>I</i>_{E2>>>def}) <i>I</i>_{E2CLP>>>def} within CLP (<i>I</i>_{E2CLP>>>def}) <i>I</i>_{E2CLP>>>def} Operating time (<i>t</i>_{E2>>>def}) 	0.00100.0 s 0.00100.0 s)0.00210.00 /E2n 0.00210.00 /E2n 0.0310.00 s
	omp)
 <i>I</i>_{EC}> <i>Element</i>^[1] <i>I</i>_{EC}> Curve type (<i>I</i>_{EC}>Curve) 	DEFINITE IEC/BS A, B, C SI/IEEE MI, VI, EI EM
 <i>I</i>_{ECCLP}> Activation time (<i>t</i>_{ECCLP}>) <i>I</i>_{EC}> Reset time delay (<i>t</i>_{EC}>_{RES}) 	0.00100.0 s 0.00100.0 s
Definite time • 50N(Comp)/51N(Comp) First threshold def. time (I_{E2}) • $I_{EC>def}$ within CLP ($I_{ECCLP>def}$) • $I_{EC>def}$ Operating time ($t_{EC>def}$) Inverse time	_{rdef}) 0.10040.0 / _n 0.10040.0 / _n 0.04200 s
 50N(Comp)/51N(Comp) First threshold inv. time (<i>I</i>_{EC}> <i>I</i>_{EC>inv} within CLP (<i>I</i>_{ECCLP>inv}) Operating time (<i>t</i>_{EC>inv}) 	⊳ _{inv})0.10020.00 <i>I</i> n 0.10020.00 <i>I</i> n 0.0260.0 s

/ _{EC} >>	Element

 <i>I</i>_{ECCLP>>} Activation time (<i>t</i>_{ECCLP>>}) <i>I</i>_{EC>>} Reset time delay (<i>t</i>_{EC>>RES}) <i>Definite time</i> 	0.00100.0 s 0.00100.0 s
 50N(Comp)/51N(Comp) Second thres. def. time (I_{E2}>>_{de} 	_f) 0.10040.0 <i>I</i> _n
 <i>I</i>_{E2>>def} within CLP (<i>I</i>_{E2CLP>>def}) <i>I</i>_{E2>>def} Operating time (<i>t</i>_{E2>>def}) 	0.10040.0 <i>I</i> n 0.0310.00 s
I _{E2} >>> Element • I _{E2CLP} >>> Activation time (t _{E2CLP} >>>) • I _{E2CLP} >>> Reset time delay (t _{E2} >>>RES) Definite time	0.00100.0 s 0.00100.0 s
 50N(Compl/51N(Comp) Third thres. def. time (<i>I</i>_{E2}>>>def) <i>I</i>_{E2CLP}>>>def within CLP (<i>I</i>_{E2CLP}>>>def) <i>I</i>_{E2CLP}>>>def Operating time (<i>t</i>_{E2}>>>def) 	0.10040.0 <i>I</i> _n 0.10040.0 <i>I</i> _n 0.0310.00 s

Note 1: the computed residual current I_{EC} is employed (vectorial sum of the phase currents)

Overvoltage - 59	
<i>Common configuration:</i> Voltage measurement type for 59 (<i>U</i>type59) 59 Operating logic (<i>Logic</i>59) 	U_{ph-ph}/U_{ph-n} AND/OR
U> Element • U> Curve type (U>Curve)	DEFINITE INVERSE [2]
 Definite time 59 First threshold definite time (U>_{def}) U>_{def} Operating time (t_U>_{def}) 	0.501.50 <i>U</i> _n / <i>E</i> _n 0.03100.0 s
Inverse time • 59 First threshold inverse time (U> _{inv}) • U> _{inv} Operating time (t _U > _{inv})	0.501.50 <i>U</i> _n / <i>E</i> _n 0.10100.0 s
U>> Element Definite time • 59 Second threshold definite time (U>> _{def}) • U>> _{def} Operating time (t _U >> _{def})	0.501.50 <i>U</i> _n / <i>E</i> _n 0.03100.0 s
Note 1: With U _{ph-ph} setting all threshold are in p.u. U _n with U _{ph-n} setting all threshold are in p.u. E _n	
Note 2: The mathematical formula for INVERSE curves t = 0.5 · t _{U>inv} / [1 - (U/U _{>inv})]	is:
where: t = operating time (in seconds) t _{U>inv} = operating time setting (in seconds) U = input voltage U> _{inv} = threshold setting	
 Residual overvoltage - 59N ^[1] Common configuration: Residual voltage measurement for 59N - cc 59N Operating mode from 74VT internal (74V 59N Operating mode from 74VT external (74V) 	Tint59N) OFF/Block
Common configuration: • Residual voltage measurement for 59N - cc • 59N Operating mode from 74VT internal (74V	<i>Tint59N</i>) OFF/Block <i>Text59N</i>) OFF/Block DEFINITE
 Common configuration: Residual voltage measurement for 59N - cc 59N Operating mode from 74VT internal (74V) 59N Operating mode from 74VT external (74V) U_E > Element U_E > Curve type (U_E > Curve) U_E > Reset time delay (t_{UE>RES}) 	<i>Tint59N</i>) OFF/Block <i>Text59N</i>) OFF/Block
 Common configuration: Residual voltage measurement for 59N - cc 59N Operating mode from 74VT internal (74V) 59N Operating mode from 74VT external (74V) 59N Operating mode from 74VT external (74V) U_E> Element U_E> Curve type (U_E>Curve) U_E> Reset time delay (t_{UE>RES}) Definite time 59N First threshold definite time (U_{E>def}) U_{E>def} Operating time (t_{UE>def}) 	Tint59N) OFF/Block Text59N) OFF/Block DEFINITE INVERSE ^[2]
Common configuration:• Residual voltage measurement for 59N - cc• 59N Operating mode from 74VT internal (74V)• 59N Operating mode from 74VT external (74V)• $U_E > Element$ • $U_E > Curve$ type ($U_E > Curve$)• $U_E > Reset$ time delay ($t_{UE>RES}$) $Definite time$ • 59N First threshold definite time ($U_E > def$)• $U_E > def$ Operating time ($t_{UE} > def$) $Inverse time$ • 59N First threshold inverse time ($U_E > inv$)• $U_E > inv$ Operating time ($t_{UE} > inv$)	Tint59N) OFF/Block Text59N) OFF/Block DEFINITE INVERSE ^[2] 0.00100.0 s 0.010.70 U _{En}
Common configuration: • Residual voltage measurement for 59N - cc • 59N Operating mode from 74VT internal (74V • 59N Operating mode from 74VT external (74V $U_E > Element$ • $U_E > Curve type (U_E > Curve)$ • $U_E > Reset time delay (t_{UE>RES})$ Definite time • 59N First threshold definite time ($U_E > def$) • $U_E > def$ Operating time ($t_{UE} > def$) Inverse time • 59N First threshold inverse time ($U_E > inv$)	Tint59N) OFF/Block Text59N) OFF/Block DEFINITE INVERSE ^[2] 0.00100.0 s 0.010.70 U _{En} 0.07100.0 s 0.01050 U _{En} 0.10100.0 s
Common configuration:• Residual voltage measurement for 59N - cc• 59N Operating mode from 74VT internal (74V)• 59N Operating mode from 74VT external (74V)• 59N Operating mode from 74VT external (74V) $U_E > Element$ • $U_E > Curve type (U_E > Curve)$ • $U_E > Curve type (U_E > Curve)$ • $U_E > Reset time delay (t_{UE>RES})$ Definite time• 59N First threshold definite time ($U_E > def$) $Inverse time$ • 59N First threshold inverse time ($U_E > inv$)• $U_E > Reset time delay (t_{UE>inv})$ • $U_E > Reset time delay (t_{UE>RES})$ • 59N Second threshold definite time ($U_E > def$)	Tint59N) OFF/Block Text59N) OFF/Block DEFINITE INVERSE ^[2] 0.00100.0 s 0.01070 U _{En} 0.10100.0 s 0.01100.0 s 0.00100.0 s 0.01070 U _{En} 0.07100.0 s

 $t = 0.5 \cdot t_{\text{UE>inv}} / [(U_{\text{EC}}/U_{\text{E>inv}}) - 1]$

where:

- *t* = operating time (in seconds)
 - *t*UE>inv = operating time setting (in seconds)
 - U_{EC} = computed residual voltage
 - $U_{\rm E}$ >inv = threshold setting

Directional phase overcurrent - 67 <i>Common configuration:</i>		
 67 Operating mode (<i>Mode67</i>) 	l/l·cos	
 67 Operating logic (Logic67) 	1/3 / 2/3	
 67 Operating mode from 74VT internal (74) 		
	lock/Not directional	
• 67 Operating mode from 74VT external (74		
OFF/E	lock/Not directional	
Ipn> Element		
 <i>I</i>_{PD}> Curve type (<i>I</i>_{PD}>Curve) 	DEFINITE	
	IEC/BS A, B, C	
	ANSI/IEEE MI, VI, EI	
	RECTIFIER, I ² t or EM	
 <i>I</i>_{PDCLP}> Activation time (<i>t</i>_{PDCLP}>) 	0.00100.0 s	
 I_{PD}> Reset time delay (t_{PD}>_{RES}) 	0.00100.0 s	
Definite time		
• 67 First threshold definite time (<i>I</i> _{PD} > _{def})	0.10040.0 <i>I</i> _n	
• <i>I</i> _{PD>def} characteristic angle (<i>Theta</i> _{PD>def})		
 IPD>def within CLP (IPDCLP>def) 	0.10040.0 <i>I</i> n	
• $I_{PD}>_{def}$ Operating time ($t_{PD}>_{def}$)	0.05200 s	
Inverse time	0 100 10 0 /	
• 67 First threshold inverse time (<i>I</i> _{PD} > _{inv})	0.10010.0 <i>I</i> n	
• I _{PD} > _{inv} characteristic angle (<i>Theta</i> _{PD>inv})	0359°	
• /PD>inv within CLP (/PDCLP>inv)	0.10010.0 /n	
• <i>I</i> _{PD} > _{inv} Operating time (<i>t</i> _{PD} > _{inv})	0.0260.0 s	
IPD>> Element	DEENUTE	
 <i>I</i>_{PD}> Curve type (<i>I</i>_{PD}>>Curve) 	DEFINITE	
	IEC/BS A, B, C	
	ANSI/IEEE MI, VI, EI	
• In a set of the set	RECTIFIER, I ² t or EM 0.00100.0 s	
 <i>I</i>_{PDCLP}>> Activation time (<i>t</i>_{PDCLP>>}) <i>I</i>_{PD}>> Reset time delay (<i>t</i>_{PD}>>_{RES}) 	0.00100.0 s	
Definite time	0.00100.0 5	
 67 Second threshold definite time (<i>I</i>_{PD}>>d) 	ef) 0.10040.0 /n	
 <i>I</i>_{PD}>>def characteristic angle (<i>Theta</i>_{PD}>>d 		
 <i>I</i>_{PD}>>_{def} within CLP (<i>I</i>_{PDCLP>>def}) 	0.10040.0 <i>I</i> _n	
 <i>I</i>_{PD}>>_{def} Operating time (<i>t</i>_{PD}>>_{def}) 	0.04200 s	
Inverse time		
• 67 Second threshold inverse time (<i>I</i> _{PD} >> _{in}	v) 0.10010.0 <i>I</i> n	
• IPD>>>inv characteristic angle (ThetaPD>>ir	_{iv}) 0359°	
 IPD>>inv within CLP (IPDCLP>>inv) 	0.10010.0 <i>I</i> n	
 <i>I</i>_{PD}>>_{inv} Operating time (<i>t</i>_{PD}>>_{inv}) 	0.0260.0 s	
IPD>>> Element		
 <i>I</i>_{PDCLP}>>> Activation time (<i>t</i>_{PDCLP>>>}) 	0.00100.0 s	
 <i>I</i>_{PD}>>> Reset time delay (<i>t</i>_{PD}>>>_{RES}) 	0.00100.0 s	
Definite time		
 67 Third threshold definite time (<i>I</i>_{PD}>>>_{def} 		
• <i>I</i> _{PD} >>> _{def} characteristic angle (<i>Theta</i> _{PD>>}		
 IPD>>>def within CLP (IPDCLP>>>def) 	0.10040.0 <i>I</i> n	
 <i>I</i>_{PD}>>>_{def} Operating time (<i>t</i>_{PD}>>>_{def}) 	0.0410.00 s	
I _{PD} >>>> Element		
 <i>I</i>_{PDCLP}>>>> Activation time (<i>t</i>_{PDCLP}>>>>) 	0.00100.0 s	
 IPD>>>> Reset time delay (tPD>>>>RES) 	0.00100.0 s	
Definite time		
• 67 Fourth threshold definite time (<i>I</i> _{PD} >>>>		
• <i>I</i> _{PD} >>> _{def} characteristic angle (<i>Theta</i> _{PD})		
 IPD>>>>def within CLP (IPDCLP>>>>def) Index of the second se	0.10040.0 <i>I</i> _n	
 <i>I</i>_{PD}>>>>_{def} Operating time (<i>t</i>_{PD}>>>>_{def}) 	0.0410.00 s	
Directional earth fault overcurrent - 6	7N [1]	
 Common configuration:		
 67N Operating mode (<i>Mode67N</i>) 	l/l·cos	
• Residual voltage measurement type for 67		
(3VoType67N)	$U_{\sf EC}$	N
• 67N Multiplier of threshold for insensitive		
67N Operating mode from 74VT internal (7		_
	lock/Not directional	Г
67N Operating mode from 74VT external (
	llock/Not directional	
I _{ED} > Element		
 I_{ED}> Curve type 	DEFINITE IEC/BS A, B, C	
	ANSI/IEEE MI, VI, EI	
	FM	

 <i>I</i>_{EDCLP}> Activation time (<i>t</i>_{EDCLP}>) <i>I</i>_{ED}> Reset time delay (<i>t</i>_{ED}>_{RES}) <i>Definite time</i> 	0.00100.0 s 0.00100.0 s
67N First threshold definite time (<i>I</i> _{ED>def} - <i>U</i> ₄ • Residual current pickup value • Residual voltage pickup value • Characteristic angle • Half operating sector • <i>I</i> _{ED>def} within CLP (<i>I</i> _{EDCLP>def}) • <i>I</i> _{ED>def} Operating time (<i>t</i> _{ED>def})	ED>def) 0.00210.00 /E1n 0.0040.500 UECn 0359° 1180° 0.00210.00 /E1n 0.05200 s
Inverse time 67N First threshold inverse time (I _{ED} > _{inv} - U _E • Residual current pickup value • Residual voltage pickup value • Characteristic angle • Half operating sector • I _{ED} > _{inv} within CLP (I _{EDCLP} > _{inv}) • I _{ED} > _{inv} Operating time (I _{ED} > _{inv}) I _{ED} >> Element	D>inv) 0.0022.00 /E1n 0.0040.500 //ECn 0359° 1180° 0.0022.00 /E1n 0.0260.0 s
 <i>I_{ED}>> Lielinem</i> <i>I_{ED}>> Curve type (I_{ED}>>Curve)</i> 	DEFINITE IEC/BS A, B, C ANSI/IEEE MI, VI, EI EM
 <i>I</i>_{EDCLP}>> Activation time (<i>t</i>_{EDCLP>>}) <i>I</i>_{ED}>> Reset time delay (<i>t</i>_{ED}>>_{RES}) <i>Definite time</i> 	0.00100.0 s 0.00100.0 s
67N Second threshold definite time (<i>I</i> _{ED} >> _{de} • Residual current pickup value • Residual voltage pickup value • Characteristic angle • Half operating sector • <i>I</i> _{ED} >> _{def} within CLP (<i>I</i> _{EDCLP} >> _{def}) • <i>I</i> _{ED} >> _{def} Operating time (<i>t</i> _{ED} >> _{def})	of - U _{ED} >> _{def}) 0.00210.00 / _{E1n} 0.0040.500 U _{ECn} 0359° 1180° 0.00210.00 / _{En} 0.0510.00 s
Inverse time 67N Second threshold inverse time (I _{ED} >>inv • Residual current pickup value • Residual voltage pickup value • Characteristic angle • Half operating sector • I _{ED} >inv within CLP (I _{EDCLP} >>inv) • I _{ED} >inv Operating time (I _{ED} >>inv)	v - U _{ED} >> _{inv}) 0.0022.00 / _{E1n} 0.0040.500 U _{ECn} 0359° 1180° 0.0022.00 / _{E1n} 0.0260.0 s
 I_{ED}>>> Element I_{EDCLP}>>> Activation time (t_{EDCLP}>>>) I_{ED}>>> Reset time delay (t_{ED}>>>RES) Definite time 	0.00100.0 s 0.00100.0 s
67N Third threshold definite time (<i>I</i> _{ED} >>> _{def} • Residual current pickup value • Residual voltage pickup value • Characteristic angle • Half operating sector • <i>I</i> _{ED} >>> _{def} within CLP (<i>I</i> _{EDCLP} >>> _{def}) • <i>I</i> _{ED} >>> _{def} Operating time (<i>t</i> _{ED} >>> _{def})	- U _{ED>>>def}) 0.00210.00 / _{E1n} 0.0040.500 U _{ECn} 0359° 1180° 0.00210.00 / _{E1n} 0.0510.00 s
 <i>I</i>_{ED}>>>> <i>Element</i> <i>I</i>_{EDCLP}>>>> Activation time (<i>t</i>_{EDCLP}>>>>) <i>I</i>_{ED}>>>> Reset time delay (<i>t</i>_{ED}>>>>RES) <i>Dafinite time</i> 	0.00100.0 s 0.00100.0 s
Definite time 67N Fourth threshold definite time (<i>I</i> _{ED} >>>>6 • Residual current pickup value • Residual voltage pickup value • Characteristic angle • Half operating sector • <i>I</i> _{ED} >>>>def within CLP (<i>I</i> _{EDCLP} >>>>def) • <i>I</i> _{ED} >>>>def Operating time (<i>t</i> _{ED} >>>>def)	def - U _{ED} >>>>def) 0.00210.00 /E1n 0.0040.500 U _{ECn} 0359° 1180° 0.00210.00 /E1n 0.0510.00 s

lote 1: the computed residual voltage U_{EC} (vectorial sum of the phase voltages) and measured residual current I_{E1} are employed

Selective block - BLOCK2

Selective block IN:

- Selective blocк IIV: BLIN Max activation time for phase protections (t_{B-IPh}) 0.10...10.00 s
- BLIN Max activation time for ground protections (*t*_{B-IE}) 0.10...10.00 s

ĒΜ

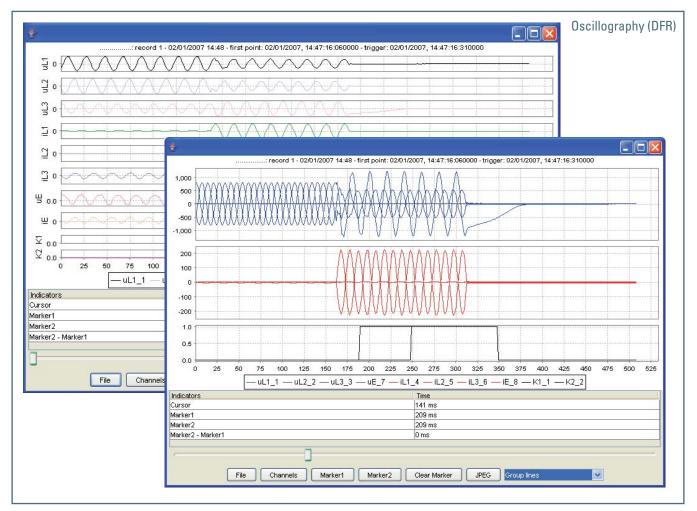
IN1, IN2...INx

	Selective block OUT: • BLOUT Dropout time delay for phase protections	s (<i>t</i> _{F-IPh})	Phase: • Displacement angle of I _{L1} respect to	o U _{L1} PhiL1
	BLOUT Drop-out time delay for ground protectio	0.001.00 s	 Displacement angle of IL2 respect t Displacement angle of IL3 respect t 	o U _{L2} PhiL2
		0.001.00 s	• Displacement angle of IL1 respect to	o U ₂₃ Alpha1
	 BLOUT Drop-out time delay for phase and group (to usual) 		 Displacement angle of IL2 respect t Displacement angle of IL3 respect t 	
	(<i>t</i> F-IPh/IE)	0.001.00 s	 Displacement angle of <i>I</i>_{L3} respect t Displacement angle of <i>U</i>_{EC} respect 	
]	Internal selective block - BLOCK4		Sequence:	
	 Output internal selective block dropout time for tions (t_{F-IPh}) 	0.0010.00 s	Positive sequence current	/1
	 Output internal selective block dropout time for g 		Negative sequence current	12
	tions (<i>t</i> _{F-IE})	0.0010.00 s	 Negative sequence current/positive s Negative sequence voltage 	sequence current ratio I_2/I_1 U_2
	Breaker failure - BF		Power:	
	BF Phase current threshold (<i>I</i> _{BF} >)	0.051.00 <i>I</i> n	Total active power	Р
	BF Residual current threshold from I_{E1} input (I_{E1BF})		 Total reactive power 	0
	BF Residual current threshold from I_{E2} input (I_{E2BF}) BF Time delay (t_{BF})	0.0610.00 s	Total apparent powerPower factor	S
_			 Power factor Phase active powers 	cosPhi P _{L1} , P _{L2} , P _{L3}
	Second Harmonic Restraint - 2ndh-REST		Phase reactive powers	Q_{L1}, Q_{L2}, Q_{L3}
	Second harmonic restraint threshold (I _{2ndh} >)	1050 %		niL1, cosPhiL2, cosPhiL3
	<i>I</i> _{2ndh} > Reset time delay (<i>t</i> _{2ndh>RES})	0.00100.0 s	2nd harmonic:	
			 Second harmonic phase currents 	I _{L1-2nd} , I _{L2-2nd} , I _{L3-2nd}
	VT supervision - 74VT		Maximum of the second harmonic	
	74VT Negative sequence overvoltage threshold (U_{2VT} 74VT Negative sequence overvoltage threshold (I_{2VT}		tal component percentage ratio	I _{-2nd} / I _L
	74VT Phase undervoltage threshold ($U_{VT<}$)	0.050.50 <i>E</i> n	3rd harmonic:	
	74VT Minimum change of current threshold 74VT (D_{IV}		Third harmonic phase currents	1 _{L1-3rd} , 1 _{L2-3rd} , 1 _{L3-3rd}
	74VT Undercurrent inhibition threshold (<i>I</i> _{VT<})	0.10040.0 <i>I</i> _n	• Third harmonic <i>I</i> _{E1} residual current	
	74VT Alarm time delay (<i>t</i> VT-AL)	0.010.0 s	4th harmonic:	
	CT supervision 74CT		 Fourth harmonic phase currents 	/ _{L1-4th} , / _{L2-4th} , / _{L3-4th}
	CT supervision - 74CT 74CT Threshold (<i>S</i> <)	0.100.95		
	74CT Overcurrent threshold (<i>I</i> *)	0.100.35 0.101.00 <i>I</i> _n	5th harmonic:	
	$S < Operating time (t_S <)$	0.03200 s	• Fifth harmonic phase currents	/ _{L1-5th} , / _{L2-5th} , / _{L3-5th}
-			Demand phase currents:	
	Circuit Breaker supervision	0 10000	Phase fixed currents demand Phase rolling currents demand	ILIFIX, IL2FIX, IL3FIX
	Number of CB trips (<i>N.Open</i>) Cumulative CB tripping currents (<i>Suml</i>)	010000 05000 <i>I</i> n	 Phase rolling currents demand Phase peak currents demand 	Ilirol, Il2rol, Il3rol Ilimax, Il2max, Il3max
	CB opening time for I^2t calculation (<i>t</i> _{break})	0.051.00 s	 Phase minimum currents demand 	ILIMIN, ILIMIN, ILIMIN, ILIMIN
	Cumulative CB tripping I^2t (<i>SumI^2t</i>)	05000 <i>I</i> _n ² ⋅s	Demonstration	
	CB max allowed opening time (<i>t</i> _{break} >)	0.051.00 s	Demand power: • Fixed active power demand	P _{FIX}
_			 Fixed reactive power demand 	0 _{FIX}
1	Pilot wire diagnostic BLOUT1 Diagnostic pulses period (<i>PulseBLOUT1</i>)		 Rolling active power demand 	P _{ROL}
		-5-10-60-120 s	Rolling reactive power demand	
	BLIN1 Diagnostic pulses control time interval (Pu		 Peak active power demand Peak reactive power demand 	P _{MAX}
		-5-10-60-120 s	 Minimum active power demand 	0 _{MAX} P _{MIN}
	METERING		Minimum reactive power demand	
			Energy:	
	Measured parameters Direct:		 Positive active energy 	E _A +
	• Frequency	f	Negative active energy	E _A -
	 Fundamental RMS phase currents 	I _{L1} , I _{L2} , I _{L3}	Total active energyPositive reactive energy	E _A E ₀ +
	 Fundamental RMS phase voltages Fundamental RMS residual currents 	U_{L1}, U_{L2}, U_{L3}	 Negative reactive energy 	<i>Ε</i> <u>0</u> + <i>Ε</i> <u>0</u> -
		I _{E1} , I _{E2}	 Total reactive energy 	Ea
	Calculated:	DThata	PT100:	
	 Thermal image Fundamental RMS phase-to-phase voltages 	DTheta U ₁₂ , U ₂₃ , U ₃₁	Temperature PT1PT8	$T_1 T_8$
	• Fundamental RMS calculated residual voltage	U12, 023, 031 U _{EC}	 Event eteroge	
	• Fundamental RMS calculated residual current	/ _{EC}	Event storage	
	 Maximum current between /L1-/L2-/L3 Minimum current between /L1-/L2-/L3 	/ _{Lmax} / _{Lmin}	Sequence of Event Recorder (SER)	
	 Average current between /L1-/L2-/L3 	/Lmin /L	Number of events Recording mode	300 circular
	 Maximum voltage between UL1-UL2-UL3 	U_{Lmax}		circular
	• Average voltage between U_{L1} - U_{L2} - U_{L3}	U_{L}	Trigger:	
	• Maximum voltage between U12-U23-U31	U _{max}	Output relays switching	K1K6Kx
	 Average voltage between U₁₂-U₂₃-U₃₁ 	U	 Binary inputs switching 	IN1. IN2INx

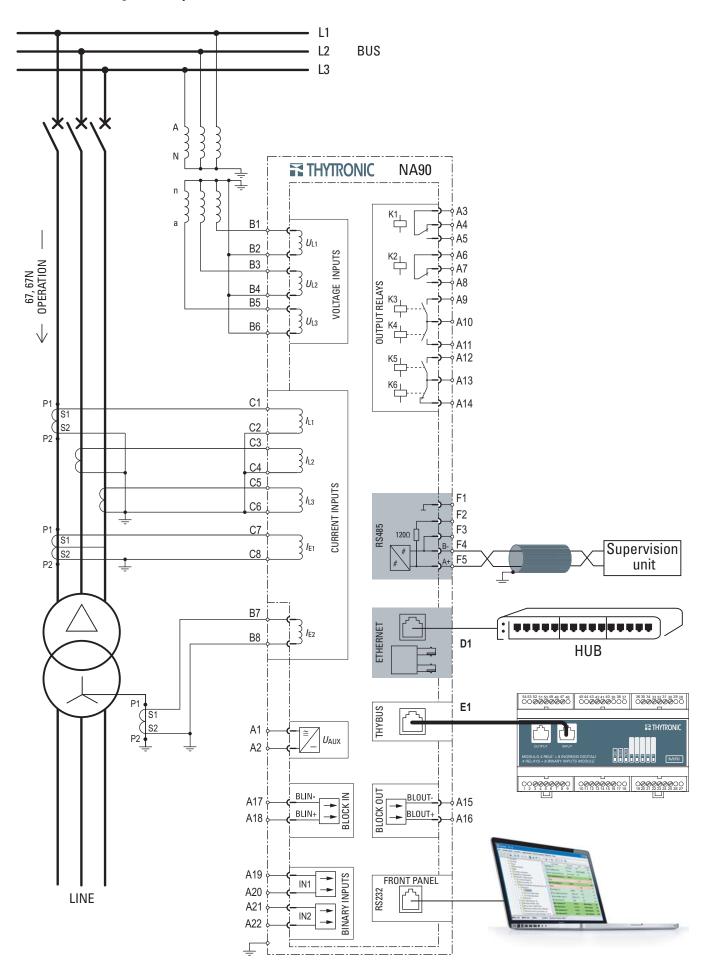
Binary inputs switching

• Setting changes

• Average voltage between U₁₂-U₂₃-U₃₁

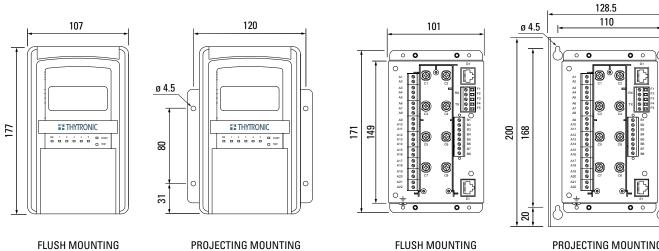

Data recorded: • Event counter (resettable by ThySetter) • Event cause binary input/output • Time stamp	010° relay/setting changes Date and time
Sequence of Fault Recorder (SFR) Number of faults Recording mode Trigger:	20 circular
 External trigger (binary inputs) Element pickup (OFF-ON transition) 	IN1, IN2INx Start/Trip
 Data recorded: • Time stamp • Fault cause • Fault counter (resettable by ThySetter) • Fundamental RMS phase currents • Fundamental RMS residual currents • Fundamental RMS phase voltages • Fundamental RMS phase-to-phase voltages • Fundamental RMS residual voltages (calcule) • Fundamental RMS residual voltages (calcule) • Fundamental RMS residual voltages (calcule) • Displacement angles (<i>I</i> _{L1} - <i>U</i> _{L1} , <i>I</i> _{L2} - <i>U</i> _{L2} , <i>I</i> _{L3} - <i>U</i> _{L3}) • Displacement angles (<i>I</i> _{L1} - <i>U</i> _{L1} , <i>I</i> _{L2} - <i>U</i> _{L3} , <i>I</i> _{L3} - <i>U</i> _{L3}) • Displacement angle (<i>U</i> _{EC} - <i>I</i> _{E12}) • Thermal image • Binary inputs state • Output relays state • Fault cause info (operating phase)	ulated) U _{ECr} L3) <i>Phi</i> L1r, <i>Phi</i> L2r, <i>Phi</i> L3r
Digital Fault Recorder (Oscillography File format	y) / COMTRADE

Bigitai i aant noooliaoi (t	boomography,
File format	COMTRADE
Records	depending on setting ^[1]
Recording mode	circular
Sampling rate	24 samples per cycle

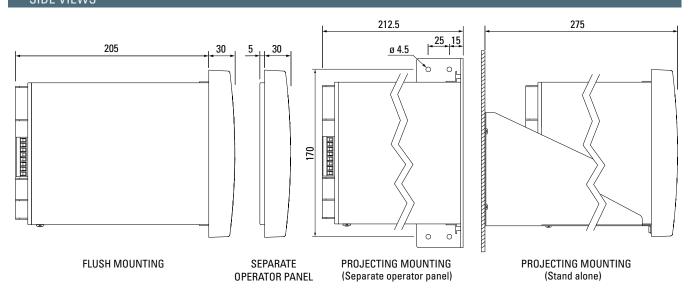

Trigger setup:	
Pre-trigger time	0.051.00 s
Post-trigger time	0.0560.00 s
Trigger from inputs	IN1, INx
Trigger from outputs	K1Kx
Manual command	
	ThySetter
Set sample channels:	
 Instantaneous currents 	i _{l1} , i _{l2} , i _{l3} , i _{E1} , i _{E2}
Instantaneous voltages	UL1, UL2, UL3
Set analog channels (Analog 112):	
• Frequency	t
 Fundamental RMS phase currents 	I _{L1} , I _{L2} , I _{L3}
 Fundamental RMS residual current 	I _{E1} , I _{E2}
 Fundamental RMS phase voltages 	U _{L1} , U _{L2} , U _{L3}
 Fundamental RMS calculated residual cur 	rent / _{EC}
 Fundamental RMS computed residual volta 	
 Fundamental RMS phase-to-phase voltage 	es U_{12}, U_{23}, U_{31}
 Displacement angles (<i>I</i>_{L1}-<i>U</i>_{L1}, <i>I</i>_{L2}-<i>U</i>_{L2}, <i>I</i>_{L3}-<i>U</i>_{L3}) 	Phi _{L1} , Phi _{L2} , Phi _{L3}
 Displacement angles (<i>I</i>_{L1}-<i>U</i>₂₃, <i>I</i>_{L2}-<i>U</i>₃₁, <i>I</i>_{L3}-<i>U</i>_{L3}) 	Alpha1, Alpha2, Alpha3
 Displacement angle (U_{EC-}I_{E1}) 	Phi _{EC}
	-2nd, 1L2-2nd, 1L3-2nd
 Maximum of the second harmonic phase 	currents/fundamen-
tal component percentage ratio	I-2nd / IL
Temperature	Τ1Τ8
•	
Set digital channels (Digital 112):	K1Kx
Output relays state Dinominants state	
 Binary inputs state 	IN1, INx
Note 1 - For instance, with following setting:	
Pre-trigger time	0.25 s
Post-trigger time	0.25 s
	0.20 0

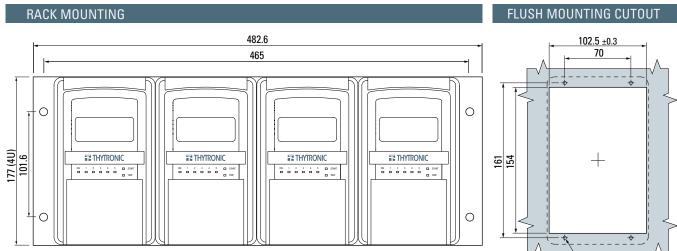
- Sampled channels iL1, iL2, iL3, iE1, iE2, uL1, uL2, uL3
- Analog channels IL1, IL2, IL3, IE1, IE2, UL1, UL2, UL3, UEC
- Digital channels K1, K2, K3, K4, K5, K6, IN1, IN2

More than 270 records can be stored with f = 50 Hz


□ Connection diagram example

DIMENSIONS


FRONT VIEWS


REAR VIEWS

PROJECTING MOUNTING (Separate operator panel)

SIDE VIEWS

N.4 holes ø 3.5

www.pro-n.it

A PERSONALISED SERVICE OF THE PRODUCTION, A RAPID DELIVERY, A COMPETITIVE PRICE AND AN ATTENTIVE EVALUATION OF OUR CUSTOMERS NEEDS, HAVE ALL CONTRIBUTED IN MAKING US ONE OF THE BEST AND MOST RELIABLE PRODUCERS OF PROTECTIVE RELAYS. FORTY YEARS OF EXPERIENCE HAS MADE STANDARD THESE ADVANTAGES THAT ARE GREATLY APPRECIATED BY LARGE COMPANIES THAT DEAL ON THE INTERNATIONAL MARKET. A HIGHLY QUALIFIED AND MOTIVATED STAFF PERMITS US TO OFFER AN AVANT-GARDE PRODUCT AND SERVICE WHICH MEET ALL SAFETY AND CONTINUITY DEMANDS, VITAL IN THE GENERATION OF ELECTRIC POWER. OUR COMPANY PHILOSOPHY HAS HAD A POSITIVE REACTION FROM THE MARKET BY BACKING OUR COMMITMENT AND HENCE STIMULATING OUR GROWTH.

Headquarters: 20139 Milano - Piazza Mistral, 7 - Tel. +39 02 574 957 01 ra - Fax +39 02 574 037 63 Factory: 35127 Padova - Z.I. Sud - Via dell'Artigianato, 48 - Tel. +39 049 894 770 1 ra - Fax +39 049 870 139 0

thytronic@thytronic.it